Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
World J Microbiol Biotechnol ; 40(3): 95, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349445

RESUMO

Marine sediments constitute the world's most substantial long-term carbon repository. The microorganisms dwelling in these sediments mediate the transformation of fixed oceanic carbon, but their contribution to the carbon cycle is not fully understood. Previous culture-independent investigations into sedimentary microorganisms have underscored the significance of carbohydrates in the carbon cycle. In this study, we employ a metagenomic methodology to investigate the distribution and abundance of carbohydrate-active enzymes (CAZymes) in 37 marine sediments sites. These sediments exhibit varying oxygen availability and were isolated in diverse regions worldwide. Our comparative analysis is based on the metabolic potential for oxygen utilisation, derived from genes present in both oxic and anoxic environments. We found that extracellular CAZyme modules targeting the degradation of plant and algal detritus, necromass, and host glycans were abundant across all metagenomic samples. The analysis of these results indicates that the oxic/anoxic conditions not only influence the taxonomic composition of the microbial communities, but also affect the occurrence of CAZyme modules involved in the transformation of necromass, algae and plant detritus. To gain insight into the sediment microbial taxa, we reconstructed metagenome assembled genomes (MAG) and examined the presence of primary extracellular carbohydrate active enzyme (CAZyme) modules. Our findings reveal that the primary CAZyme modules and the CAZyme gene clusters discovered in our metagenomes were prevalent in the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. We compared those MAGs to organisms from the same taxonomic classes found in soil, and we found that they were similar in its CAZyme repertoire, but the soil MAG contained a more abundant and diverse CAZyme content. Furthermore, the data indicate that abundant classes in our metagenomic samples, namely Alphaproteobacteria, Bacteroidia and Gammaproteobacteria, play a pivotal role in carbohydrate transformation within the initial few metres of the sediments.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Metagenoma , Bacteroidetes , Biodiversidade , Carbono , Sedimentos Geológicos , Oxigênio , Solo
2.
Foods ; 12(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174431

RESUMO

Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.

3.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680283

RESUMO

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Assuntos
COVID-19 , Epidemias , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética
4.
Front Microbiol ; 14: 1308626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264488

RESUMO

The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase (BCL). The anaerobic route is steered by benzoyl-CoA reductase, which promotes benzoyl-CoA breakdown, which is subsequently oxidized. In certain bacteria at low oxygen conditions, the aerobic metabolism of monoaromatic hydrocarbons occurs through the degradation Box pathway. These pathways have undergone experimental scrutiny in Alphaproteobacteria and Betaproteobacteria and have also been explored bioinformatically in representative Betaproteobacteria. However, there is a gap in our knowledge regarding the distribution of the benzoyl-CoA pathway and the evolutionary forces propelling its adaptation beyond that of representative bacteria. To address these questions, we used bioinformatic procedures to identify the BCLs and the lower pathways that transform benzoyl-CoA. These procedures included the identification of conserved motifs. As a result, we identified two motifs exclusive to BCLs, describing some of the catalytic properties of this enzyme. These motifs helped to discern BCLs from other aryl-CoA ligases effectively. The predicted BCLs and the enzymes of lower pathways were used as genomic markers for identifying aerobic, anaerobic, or hybrid catabolism, which we found widely distributed in Betaproteobacteria. Despite these enhancements, our approach failed to distinguish orthologs from a small cluster of paralogs exhibiting all the specified features to predict an ortholog. Nonetheless, the conducted phylogenetic analysis and the properties identified in the genomic context aided in formulating hypotheses about how this redundancy contributes to refining the catabolic strategy employed by these bacteria to degrade the substrates.

5.
Microb Cell Fact ; 21(1): 189, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100849

RESUMO

BACKGROUND: The modification of glucose import capacity is an engineering strategy that has been shown to improve the characteristics of Escherichia coli as a microbial factory. A reduction in glucose import capacity can have a positive effect on production strain performance, however, this is not always the case. In this study, E. coli W3110 and a group of four isogenic derivative strains, harboring single or multiple deletions of genes encoding phosphoenolpyruvate:sugar phosphotransferase system (PTS)-dependent transporters as well as non-PTS transporters were characterized by determining their transcriptomic response to reduced glucose import capacity. RESULTS: These strains were grown in bioreactors with M9 mineral salts medium containing 20 g/L of glucose, where they displayed specific growth rates ranging from 0.67 to 0.27 h-1, and specific glucose consumption rates (qs) ranging from 1.78 to 0.37 g/g h. RNA-seq analysis revealed a transcriptional response consistent with carbon source limitation among all the mutant strains, involving functions related to transport and metabolism of alternate carbon sources and characterized by a decrease in genes encoding glycolytic enzymes and an increase in gluconeogenic functions. A total of 107 and 185 genes displayed positive and negative correlations with qs, respectively. Functions displaying positive correlation included energy generation, amino acid biosynthesis, and sugar import. CONCLUSION: Changes in gene expression of E. coli strains with impaired glucose import capacity could be correlated with qs values and this allowed an inference of the physiological state of each mutant. In strains with lower qs values, a gene expression pattern is consistent with energy limitation and entry into the stationary phase. This physiological state could explain why these strains display a lower capacity to produce recombinant protein, even when they show very low rates of acetate production. The comparison of the transcriptomes of the engineered strains employed as microbial factories is an effective approach for identifying favorable phenotypes with the potential to improve the synthesis of biotechnological products.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Carbono/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Açúcares/metabolismo
6.
Viruses ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35746637

RESUMO

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , México/epidemiologia , Pandemias , Filogenia , SARS-CoV-2/genética
7.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389245

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/genética
8.
Front Public Health ; 10: 1050673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711379

RESUMO

Background: After the initial outbreak in China (December 2019), the World Health Organization declared COVID-19 a pandemic on March 11th, 2020. This paper aims to describe the first 2 years of the pandemic in Mexico. Design and methods: This is a population-based longitudinal study. We analyzed data from the national COVID-19 registry to describe the evolution of the pandemic in terms of the number of confirmed cases, hospitalizations, deaths and reported symptoms in relation to health policies and circulating variants. We also carried out logistic regression to investigate the major risk factors for disease severity. Results: From March 2020 to March 2022, the coronavirus disease 2019 (COVID-19) pandemic in Mexico underwent four epidemic waves. Out of 5,702,143 confirmed cases, 680,063 were hospitalized (11.9%), and 324,436 (5.7%) died. Even if there was no difference in susceptibility by gender, males had a higher risk of death (CFP: 7.3 vs. 4.2%) and hospital admission risk (HP: 14.4 vs. 9.5%). Severity increased with age. With respect to younger ages (0-17 years), the 60+ years or older group reached adjusted odds ratios of 9.63 in the case of admission and 53.05 (95% CI: 27.94-118.62) in the case of death. The presence of any comorbidity more than doubled the odds ratio, with hypertension-diabetes as the riskiest combination. While the wave peaks increased over time, the odds ratios for developing severe disease (waves 2, 3, and 4 to wave 1) decreased to 0.15 (95% CI: 0.12-0.18) in the fourth wave. Conclusion: The health policy promoted by the Mexican government decreased hospitalizations and deaths, particularly among older adults with the highest risk of admission and death. Comorbidities augment the risk of developing severe illness, which is shown to rise by double in the Mexican population, particularly for those reported with hypertension-diabetes. Factors such as the decrease in the severity of the SARS-CoV2 variants, changes in symptomatology, and advances in the management of patients, vaccination, and treatments influenced the decrease in mortality and hospitalizations.


Assuntos
COVID-19 , Diabetes Mellitus , Hipertensão , Masculino , Humanos , Idoso , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Estudos Longitudinais , México/epidemiologia , Seguimentos , RNA Viral , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia
9.
PLoS One ; 16(3): e0246651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651833

RESUMO

Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/microbiologia , Genômica , Peptidoglicano/metabolismo , Bacillus subtilis/genética , Parede Celular/metabolismo , Esporos Bacterianos/genética
10.
Front Microbiol ; 12: 781497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178038

RESUMO

Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.

11.
Mar Biotechnol (NY) ; 23(1): 106-126, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215353

RESUMO

The search for novel biosurfactants (Bs) requires the isolation of microorganisms from different environments. The Gulf of Mexico (GoM) is a geographical area active in the exploration and exploitation of hydrocarbons. Recent metagenomic and microbiologic studies in this area suggested a potential richness for novel Bs microbial producers. In this work, nineteen bacterial consortia from the GoM were isolated at different depths of the water column and marine sediments. Bs production from four bacterial consortia was detected by the CTAB test and their capacity to reduce surface tension (ST), emulsion index (EI24), and hemolytic activity. These bacterial consortia produced Bs in media supplemented with kerosene, diesel, or sucrose. Cultivable bacteria from these consortia were isolated and identified by bacterial polyphasic characterization. In some consortia, Enterobacter cloacae was the predominant specie. E. cloacae BAGM01 presented Bs activity in minimal medium and was selected to improve its Bs production using a Taguchi and Box-Behnken experimental design; this strain was able to grow and presented Bs activity at 35 g L-1 of NaCl. This Bs decreased ST to around 34.5 ± 0.56 mNm-1 and presented an EI24 of 71 ± 1.27%. Other properties of this Bs were thermal stability, stability in alkaline conditions, and stability at high salinity, conferring important and desirable characteristics in multiple industries. The analysis of the genome of E. cloacae BAGM01 showed the presence of rhlAB genes that have been reported in the synthesis of rhamnolipids, and alkAB genes that are related to the degradation of alkanes. The bioactive molecule was identified as a rhamnolipid after HPLC derivatization, 1H NMR, and UPLC-QTOF-MS analysis.


Assuntos
Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Glicolipídeos/química , Tensoativos/química , Bactérias/isolamento & purificação , Golfo do México , Consórcios Microbianos , Salinidade
12.
Front Microbiol ; 11: 1825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903729

RESUMO

The Gulf of Mexico (GoM) is a particular environment that is continuously exposed to hydrocarbon compounds that may influence the microbial community composition. We carried out a metagenomic assessment of the bacterial community to get an overall view of this geographical zone. We analyzed both taxonomic and metabolic markers profiles to explain how the indigenous GoM microorganims participate in the biogeochemical cycling. Two geographically distant regions in the GoM, one in the north-west (NW) and one in the south-east (SE) of the GoM were analyzed and showed differences in their microbial composition and metabolic potential. These differences provide evidence the delicate equilibrium that sustains microbial communities and biogeochemical cycles. Based on the taxonomy and gene groups, the NW are more oxic sediments than SE ones, which have anaerobic conditions. Both water and sediments show the expected sulfur, nitrogen, and hydrocarbon metabolism genes, with particularly high diversity of the hydrocarbon-degrading ones. Accordingly, many of the assigned genera were associated with hydrocarbon degradation processes, Nitrospira and Sva0081 were the most abundant in sediments, while Vibrio, Alteromonas, and Alcanivorax were mostly detected in water samples. This basal-state analysis presents the GoM as a potential source of aerobic and anaerobic hydrocarbon degradation genes important for the ecological dynamics of hydrocarbons and the potential use for water and sediment bioremediation processes.

13.
Front Microbiol ; 11: 1283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625185

RESUMO

Acinetobacter baumannii is an emergent bacterial pathogen that provokes many types of infections in hospitals around the world. The genome of this organism consists of a chromosome and plasmids. These plasmids vary over a wide size range and many of them have been linked to the acquisition of antibiotic-resistance genes. Our bioinformatic analyses indicate that A. baumannii plasmids belong to a small number of plasmid lineages. The general structure of these lineages seems to be very stable and consists not only of genes involved in plasmid maintenance functions but of gene sets encoding poorly characterized proteins, not obviously linked to survival in the hospital setting, and opening the possibility that they improve the parasitic properties of plasmids. An analysis of genes involved in replication, suggests that members of the same plasmid lineage are part of the same plasmid incompatibility group. The same analysis showed the necessity of classifying the Rep proteins in ten new groups, under the scheme proposed by Bertini et al. (2010). Also, we show that some plasmid lineages have the potential capacity to replicate in many bacterial genera including those embracing human pathogen species, while others seem to replicate only within the limits of the Acinetobacter genus. Moreover, some plasmid lineages are widely distributed along the A. baumannii phylogenetic tree. Despite this, a number of them lack genes involved in conjugation or mobilization functions. Interestingly, only 34.6% of the plasmids analyzed here possess antibiotic resistance genes and most of them belong to fourteen plasmid lineages of the twenty one described here. Gene flux between plasmid lineages appears primarily limited to transposable elements, which sometimes carry antibiotic resistance genes. In most plasmid lineages transposable elements and antibiotic resistance genes are secondary acquisitions. Finally, broad host-range plasmids appear to have played a crucial role.

15.
BMC Res Notes ; 12(1): 686, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647017

RESUMO

OBJECTIVES: Like many other proteins, those belonging to the signal transduction cascade initiating sporulation (Spo0 pathway) have conserved protein domains (Capra and Laub in Annu Rev Microbiol 66:325-47, 2012). Improvements in bioinformatics applications to discover proteins involved in the initiation of the sporulating cascade in newly sequenced genomes is an important task that requires rigorous comparative genomic methods and manual curation to identify endospore-forming bacteria. This note aims to present a collection of predicted proteins involved in the Spo0 pathway found in the proteomes of fully sequenced and manually curated endospore-forming Firmicutes species. This collection may serve as a guide to conduct future experiments in endospore formers in genomic and metagenomic projects. DATA DESCRIPTION: Similar to the report of Davidson et al. (PLoS Genet 14:1-33, 2018), we used Pfam profiles (El-Gebali et al. in Nucleic Acids Res 47:D427-32, 2019) defining each protein and the genomic context surrounding the query gene to predict probable orthologs of the Spo0 pathway in Firmicutes. We present in this note a collection of 325 Firmicutes species organized by phylogenetic class and classified as spore formers, non-spore formers or unknown spore phenotype based on published literature, for which we predicted probable orthologs defining the signal transduction pathway initiating sporulation.


Assuntos
Proteínas de Bactérias/genética , Firmicutes/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/genética , Esporos Bacterianos/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Firmicutes/classificação , Firmicutes/metabolismo , Genoma Bacteriano/genética , Genômica/métodos , Genômica/estatística & dados numéricos , Filogenia , Proteômica/métodos , Proteômica/estatística & dados numéricos , Especificidade da Espécie
16.
Trends Psychiatry Psychother ; 41(2): 104-111, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241683

RESUMO

INTRODUCTION: Schizophrenia is a severe mental disorder. While some antipsychotic medications have demonstrated efficacy in treating positive symptoms, there is no widely recognized treatment for negative symptoms, which can cause significant distress and impairment for patients with schizophrenia. Here we describe the rationale and design of the STARTS study (Schizophrenia TreAtment with electRic Transcranial Stimulation), a clinical trial aimed to test the efficacy of a non-pharmacological treatment known as transcranial direct current stimulation (tDCS) for treating the negative symptoms of schizophrenia. METHODS: The STARTS study is designed as a randomized, sham-controlled, double-blinded trial evaluating tDCS for the treatment of the negative symptoms of schizophrenia. One-hundred patients will be enrolled and submitted to 10 tDCS sessions over the left dorsolateral prefrontal cortex (anodal stimulation) and left temporoparietal junction (cathodal stimulation) over 5 consecutive days. Participants will be assessed using clinical and neuropsychological tests before and after the intervention. The primary outcome is change in the Positive and Negative Syndrome Scale (PANSS) negative subscale score over time and across groups. Biological markers, including blood neurotrophins and interleukins, genetic polymorphisms, and motor cortical excitability, will also be assessed. RESULTS: The clinical results will provide insights about tDCS as a treatment for the negative symptoms of schizophrenia, and the biomarker investigation will contribute towards an improved understanding of the tDCS mechanisms of action. CONCLUSION: Our results could introduce a novel therapeutic technique for the negative symptoms of schizophrenia. Clinical trial registration: ClinicalTrials.gov, NCT02535676 .


Assuntos
Córtex Pré-Frontal , Esquizofrenia/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Adulto Jovem
17.
Trends psychiatry psychother. (Impr.) ; 41(2): 104-111, Apr.-June 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1014743

RESUMO

Abstract Introduction Schizophrenia is a severe mental disorder. While some antipsychotic medications have demonstrated efficacy in treating positive symptoms, there is no widely recognized treatment for negative symptoms, which can cause significant distress and impairment for patients with schizophrenia. Here we describe the rationale and design of the STARTS study (Schizophrenia TreAtment with electRic Transcranial Stimulation), a clinical trial aimed to test the efficacy of a non-pharmacological treatment known as transcranial direct current stimulation (tDCS) for treating the negative symptoms of schizophrenia Methods The STARTS study is designed as a randomized, sham-controlled, double-blinded trial evaluating tDCS for the treatment of the negative symptoms of schizophrenia. One-hundred patients will be enrolled and submitted to 10 tDCS sessions over the left dorsolateral prefrontal cortex (anodal stimulation) and left temporoparietal junction (cathodal stimulation) over 5 consecutive days. Participants will be assessed using clinical and neuropsychological tests before and after the intervention. The primary outcome is change in the Positive and Negative Syndrome Scale (PANSS) negative subscale score over time and across groups. Biological markers, including blood neurotrophins and interleukins, genetic polymorphisms, and motor cortical excitability, will also be assessed. Results The clinical results will provide insights about tDCS as a treatment for the negative symptoms of schizophrenia, and the biomarker investigation will contribute towards an improved understanding of the tDCS mechanisms of action. Conclusion Our results could introduce a novel therapeutic technique for the negative symptoms of schizophrenia. Clinical trial registration: ClinicalTrials.gov, NCT02535676 .


Resumo Introdução A esquizofrenia é um transtorno mental grave. Embora alguns medicamentos antipsicóticos tenham demonstrado eficácia no tratamento de sintomas positivos, não há tratamento amplamente reconhecido para sintomas negativos, o que pode causar sofrimento e prejuízo significativos para pacientes com esquizofrenia. Aqui descrevemos a fundamentação teórica e o design do estudo STARTS (Schizophrenia TreAtment with electRic Transcranial Stimulation), um ensaio clínico destinado a testar a eficácia de um tratamento não farmacológico conhecido como estimulação transcraniana por corrente contínua (ETCC) para tratar os sintomas negativos da esquizofrenia. Métodos O estudo STARTS foi concebido como um ensaio clínico randomizado, controlado por simulação, duplo-cego, avaliando a ETCC para o tratamento dos sintomas negativos da esquizofrenia. Cem pacientes serão incluídos e submetidos a 10 sessões de ETCC sobre o córtex pré-frontal dorsolateral esquerdo (estimulação anódica) e a junção temporoparietal esquerda (estimulação catodal) durante 5 dias consecutivos. Os participantes serão avaliados através de testes clínicos e neuropsicológicos antes e após a intervenção. O desfecho primário é a mudança na pontuação da subescala negativa da Escala da Síndrome Positiva e Negativa (Positive and Negative Syndrome Scale [PANSS]) ao longo do tempo e entre os grupos. Marcadores biológicos, incluindo neurotrofinas e interleucinas do sangue, polimorfismos genéticos e excitabilidade cortical motora, também serão avaliados. Resultados Os resultados clínicos fornecerão informações sobre a ETCC como um tratamento para os sintomas negativos da esquizofrenia, e a investigação dos biomarcadores contribuirá para uma melhor compreensão dos mecanismos de ação da ETCC. Conclusão Nossos resultados podem trazer uma nova técnica terapêutica para o tratamento dos sintomas negativos da esquizofrenia. Registro do ensaio clínico: ClinicalTrials.gov, NCT02535676.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Idoso , Adulto Jovem , Esquizofrenia/terapia , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Duplo-Cego , Resultado do Tratamento , Pessoa de Meia-Idade , Testes Neuropsicológicos
18.
Biotechnol Rep (Amst) ; 23: e00328, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30984572

RESUMO

Zymomonas mobilis ZM4 is an ethanol-producing microbe that is constitutively tolerant to this solvent. For a better understanding of the ethanol tolerance phenomenon we obtained and characterized two ZM4 mutants (ER79ap and ER79ag) with higher ethanol tolerance than the wild-type. Mutants were evaluated in different ethanol concentrations and this analysis showed that mutant ER79ap was more tolerant and had a better performance in terms of cell viability, than the wild-type strain and ER79ag mutant. Genotyping of the mutant strains showed that both carry non-synonymous mutations in clpP and spoT/relA genes. A third non-synonymous mutation was found only in strain ER79ap, in the clpB gene. Considering that ER79ap has the best tolerance to added ethanol, the mutant alleles of this strain were evaluated in ZM4 and here we show that while all of them contribute to ethanol tolerance, mutation within spoT/relA gene seems to be the most important.

19.
Front Microbiol ; 9: 2528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405581

RESUMO

Marine sediments are an example of one of the most complex microbial habitats. These bacterial communities play an important role in several biogeochemical cycles in the marine ecosystem. In particular, the Gulf of Mexico has a ubiquitous concentration of hydrocarbons in its sediments, representing a very interesting niche to explore. Additionally, the Mexican government has opened its oil industry, offering several exploration and production blocks in shallow and deep water in the southwestern Gulf of Mexico (swGoM), from which there are no public results of conducted studies. Given the higher risk of large-scale oil spills, the design of contingency plans and mitigation activities before oil exploitation is of growing concern. Therefore, a bacterial taxonomic baseline profile is crucial to understanding the impact of any eventual oil spill. Here, we show a genus level taxonomic profile to elucidate the bacterial baseline, pointing out richness and relative abundance, as well as relationships with 79 abiotic parameters, in an area encompassing ∼150,000 km2, including a region where the exploitation of new oil wells has already been authorized. Our results describe for the first time the bacterial landscape of the swGoM, establishing a bacterial baseline "core" of 450 genera for marine sediments in this region. We can also differentiate bacterial populations from shallow and deep zones of the swGoM based on their community structure. Shallow sediments have been chronically exposed to aromatic hydrocarbons, unlike deep zones. Our results reveal that the bacterial community structure is particularly enriched with hydrocarbon-degrading bacteria in the shallow zone, where a greater aromatic hydrocarbon concentration was determined. Differences in the bacterial communities in the swGoM were also observed through a comprehensive comparative analysis relative to various marine sediment sequencing projects, including sampled sites from the Deep Water Horizon oil spill. This study in the swGoM provides clues to the bacterial population adaptation to the ubiquitous presence of hydrocarbons and reveals organisms such as Thioprofundum bacteria with potential applications in ecological surveillance. This resource will allow us to differentiate between natural conditions and alterations generated by oil extraction activities, which, in turn, enables us to assess the environmental impact of such activities.

20.
BMC Res Notes ; 11(1): 608, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143048

RESUMO

OBJECTIVES: Improvements in bioinformatics applications for the enzyme identification of biochemical reactions, enzyme classifications, mining for specific inhibitors and pathfinding require the accurate computational detection of reaction similarity. We provide a set of substrate-product pairs, clustered by reactions that share similar chemical transformation patterns, for which accuracy was calculated, comparing this set with manually curated data sets. DATA DESCRIPTION: The data were analyzed by a new method that naturally split each reaction into compound pairs and loner compounds, which we called architectures (Vazquez-Hernandez et al. in BMC Syst Biol 12:63, 2018). The data include a set of 7491 curated reactions from the KEGG-Ligand data set. The data are presented in two formats, a string format and a tree structure, both of which reflect the splitting process and the final architectures of each reaction. We are also reporting sets of reactions that show similar splitting patterns naturally grouped into clusters of tree structures. The compound pairs in each cluster were compared with the reactant pairs proposed by the KEGG-RCLASS data set, and a match precision value is also provided. These data were collected with the aim of providing research with a confident set of reactant pairs that is useful for selecting between alternative substrate-product pairs predicted by pathfinders.


Assuntos
Biologia Computacional , Enzimas , Redes e Vias Metabólicas , Vias Biossintéticas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...